Rodent Brain Microinjection to Study Molecular Substrates of Motivated Behavior.
September 16, 2015
Poland RS, Bull C, Syed WA, Bowers MS
2015 J Vis Exp. (103). doi:10.3791/53018. PMCID: PMC4692606.
Brain microinjection can aid elucidation of the molecular substrates of complex behaviors, such as motivation. For this purpose rodents can serve as appropriate models, partly because the response to behaviorally relevant stimuli and the circuitry parsing stimulus-action outcomes is astonishingly similar between humans and rodents. In studying molecular substrates of complex behaviors, the microinjection of reagents that modify, augment, or silence specific systems is an invaluable technique. However, it is crucial that the microinjection site is precisely targeted in order to aid interpretation of the results. We present a method for the manufacture of surgical implements and microinjection needles that enables accurate microinjection and unlimited customizability with minimal cost. Importantly, this technique can be successfully completed in awake rodents if conducted in conjunction with other JoVE articles that covered requisite surgical procedures. Additionally, there are many behavioral paradigms that are well suited for measuring motivation. The progressive ratio is a commonly used method that quantifies the efficacy of a reinforcer to maintain responding despite an (often exponentially) increasing work requirement. This assay is sensitive to reinforcer magnitude and pharmacological manipulations, which allows reinforcing efficacy and/ or motivation to be determined. We also present a straightforward approach to program operant software to accommodate a progressive ratio reinforcement schedule.